Department of Basic Sciences & Engineering

Vijender Nallapu Hello Vijender Nallapu
Assistant Professor
vijender.nallapu@bs.iiitn.ac.in; vijendernallapu@gmail.com
Contact No: +91 9677021954
   
Education Experience Teaching Research Publications Supervision Responsibilities Any Other

Education
  • PhD. in Mathematics from Indian Institute of Technology, Madras, India (2015)
  • M.Sc. in Mathematics from NIT, Warangal (2008)
  • B.Sc in Mathematics, Physics and Chemistry from Kakatiya University, Warangal (2005)

Experience
  • July 2019 to till date - Assistant Professor, IIIT Nagpur
  • August 2014 to July 2019 - Assistant Professor, Vellore Institute of Technology Chennai, India

Teaching
  • Maths - I - CSE / ECE 1st Sem (2019)

Research
  • Area of Research
  • Fractal Approximation Theory
  • Fractal Splines
  • Weak Splines
  • Fractal Numerical Methods
  • Research Project
  • Project Title: Development of Theory of q-Splines and Applications in Computer Aided Geometric Design, Fundded by CSIR, India, for the period of August 2018 - August 2020
  • Reviewer for Journal / Conference
  • Reviewer for American Mathematical Society (AMS)
  • Reviewer for Fractals
  • Fractals, Chaos, & Solitons
  • Advances in Difference Equations

Publications
  • A. K. B. Chand, N. Vijender, P. Viswanathan, A. V. Tetenov, Afine Zipper Fractal Interpolation Functions, BIT Numerical Mathematics, 2019. https://doi.org/10.1007
  • N. Vijender, Bernstein Fractal Approximation and Fractal Full Muntz Theorems, Electronic Transactions on Numerical Analysis (ETNA), 51, 1-24, 2019.
  • N. Vijender, Bernstein Fractal Trigonometric Approximation, Acta Applicandae Mathematicae, 159(1), 2018.
  • N. Vijender, Positivity and Stability of Rational Cubic Fractal Interpolation Surfaces, Mediterranean Journal of Mathematics, 15 (89), 2018.
  • N. Vijender, Bernstein Fractal Rational Approximants with No Condition on Scaling Vectors, Fractals, 26(4), 2018.
  • N. Vijender, Fractal Perturbation of Shaped Functions: Convergence Independent of Scaling, Mediterranean Journal of Mathematics, 15(211), 2018.
  • A. K. B. Chand, N. Vijender, and M. A. Navascues, Convexity/Concavity and Stability Aspects of Rational Cubic Fractal Interpolation Surfaces, Computational Mathematics and Modeling, 28(3), 2017.
  • A. K. B. Chand, P. Viswanathan, and N. Vijender, Bicubic Partially Blended Rational Fractal Surface for a Constrained Interpolation Problem, Computational and Applied Mathematics, 37(1), 2016.
  • A. K. B. Chand and N. Vijender, Monotonicity/Symmetricity Preserving Rational Quadratic Fractal Interpolation Surfaces, International Journal of Numerical Analysis and Modeling, 13(1), 145-165, 2016.
  • A. K. B. Chand and N. Vijender, A new Class of Fractal Interpolation Surfaces Based on Functional Values, Fractals, 23(2), 2015.
  • A. K. B. Chand, P. Viswanathan, and N. Vijender, Bivariate Shape Preserving Interpolation: A Fractal-Classical Hybrid Approach, Chaos, Solitons & Fractals, 81, 330-344, 2015.
  • A. K. B. Chand and N. Vijender, Positive Blending Hermite Rational Cubic Spline Fractal Interpolation Surfaces, Calcolo, 52, 1-24, 2015.
  • A. K. B. Chand, N. Vijender, and M. A. Navascues, Shape Preservation of Scienti c Data Through Rational Fractal Splines, Calcolo, 51, 329-362, 2014.
  • A. K. B. Chand, N. Vijender, and R. P. Agarwal, Rational Iterated Function System for Positive/Monotonic Shape Preservation, Advances in Difference Equations, 2014:30, 2014.
  • A. K. B. Chand and N. Vijender, Monotonicity Preserving Rational Quadratic Fractal Interpolation Functions, Advances in Numerical Analysis, 2014, 17 pages, Article ID 504825.
  • N. Vijender and A. K. B. Chand, Shape Preserving Afine Fractal Interpolation Surfaces, Nonlinear Studies, 21(2), 175-190, 2014.
  • A. K. B. Chand and N. Vijender, A Monotonic Rational Fractal Interpolation Surface and Its Analytical Properties, Springer Proceedings in Mathematics & Statistics 139, (2015), DOI: https://doi.org/10.1007/978-81-322-2452-5 14
  • A. K. B. Chand and N. Vijender, C1-Rational Cubic Fractal Interpolation Surface Using Functional Values, Springer Proceedings in Mathematics & Statistics 92, (2014), DOI: https://doi.org/10.1007/978-3-319-08105-2 22
  • A. K. B. Chand and N. Vijender, Monotonicity Preserving Rational Cubic Spline Fractal Interpolation Function, 2013, ISBN No. 978-93-80689-17-3.
  • A. K. B. Chand and N. Vijender, Positive Blending Cubic Spline Fractal Interpolation Surfaces, 2012, ISBN No. 978-81-925376-0-8.

Supervision
  • PhD.
  • M. Tech.
  • B.E. / B. Tech.
 
Responsibilities
 
Any Other
  • Received NBHM Post Doc Fellowship, 2016
  • Qualified CSIR-UGC (NET), 2009
  • Qualified GATE- 2009 with 94 Percentile